Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715090

ABSTRACT

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Subject(s)
Brain , Cytokines , Mice, Inbred C57BL , Neurodevelopmental Disorders , Placenta , Prenatal Exposure Delayed Effects , Sex Characteristics , Female , Animals , Pregnancy , Male , Cytokines/metabolism , Cytokines/genetics , Mice , Brain/metabolism , Brain/immunology , Brain/embryology , Placenta/metabolism , Placenta/immunology , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/metabolism , Poly I-C/toxicity , Transcriptome , Disease Models, Animal , Fetus/metabolism
2.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051358

ABSTRACT

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Subject(s)
BRCA1 Protein/genetics , Germ-Line Mutation , Loss of Function Mutation , Mutation, Missense , Neurodevelopmental Disorders/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Adolescent , BRCA1 Protein/immunology , Child , Child, Preschool , Chromatin/chemistry , Chromatin/immunology , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/immunology , Family , Female , Gene Expression Regulation , Heterozygote , Histones/genetics , Histones/immunology , Host Cell Factor C1/genetics , Host Cell Factor C1/immunology , Humans , Infant , Male , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/pathology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/immunology , Ubiquitin/genetics , Ubiquitin/immunology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Ubiquitination
3.
J Neuroimmunol ; 364: 577813, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35093761

ABSTRACT

Maternal immune activation (MIA) with poly(I:C) is a preclinical paradigm for schizophrenia and autism research. Methodological variations, including poly(I:C) molecular weight, contribute to inconsistencies in behavioural and molecular outcomes. We established in Wistar rats that 4 mg/kg high molecular weight (HMW)-poly(I:C) on GD19 induces maternal sickness, smaller litters and maternal elevations of serum cytokines, including increases in monocyte chemoattractants. In adult offspring, we found that males have higher serum cytokines than females, and MIA did not alter peripheral cytokines in either sex. Our study will contribute to the effective use of the MIA model to elucidate the neurobiology of neurodevelopmental disorders.


Subject(s)
Monocyte Chemoattractant Proteins/immunology , Neurodevelopmental Disorders/immunology , Poly I-C/toxicity , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Cytokines/blood , Cytokines/immunology , Disease Models, Animal , Female , Male , Poly I-C/immunology , Pregnancy , Rats , Rats, Wistar
4.
Behav Brain Res ; 418: 113629, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34656692

ABSTRACT

Mice homozygous for the nude mutation (Foxn1nu) are hairless and exhibit congenital dysgenesis of the thymic epithelium, resulting in a primary immunodeficiency of mature T-cells, and have been used for decades in research with tumour grafts. Early studies have already demonstrated social behaviour impairments and central nervous system (CNS) alterations in these animals, but did not address the complex interplay between CNS, immune system and behavioural alterations. Here we investigate the impact of T-cell immunodeficiency on behaviours relevant to the study of neurodevelopmental and neuropsychiatric disorders. Moreover, we aimed to characterise in a multidisciplinary manner the alterations related to those findings, through evaluation of the excitatory/inhibitory synaptic proteins, cytokines expression and biological spectrum signature of different biomolecules in nude mice CNS. We demonstrate that BALB/c nude mice display sociability impairments, a complex pattern of repetitive behaviours and higher sensitivity to thermal nociception. These animals also have a reduced IFN-γ gene expression in the prefrontal cortex and an absence of T-cells in meningeal tissue, both known modulators of social behaviour. Furthermore, excitatory synaptic protein PSD-95 immunoreactivity was also reduced in the prefrontal cortex, suggesting an intricate involvement of social behaviour related mechanisms. Lastly, employing biospectroscopy analysis, we have demonstrated that BALB/c nude mice have a different CNS spectrochemical signature compared to their heterozygous littermates. Altogether, our results show a comprehensive behavioural analysis of BALB/c nude mice and potential neuroimmunological influences involved with the observed alterations.


Subject(s)
Mental Disorders/immunology , Mutation/genetics , Neurodevelopmental Disorders/immunology , T-Lymphocytes/immunology , Animals , Mice , Mice, Inbred BALB C , Mice, Nude
5.
Immunity ; 55(1): 145-158.e7, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34879222

ABSTRACT

Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder/immunology , CD4-Positive T-Lymphocytes/immunology , Chromatin/metabolism , Gastrointestinal Microbiome/immunology , Inflammation/immunology , Interleukin-17/metabolism , Intestines/immunology , Neurodevelopmental Disorders/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Autism Spectrum Disorder/microbiology , Child , Disease Models, Animal , Fecal Microbiota Transplantation , Female , Humans , Immunization , Inflammation/microbiology , Mice , Neurodevelopmental Disorders/microbiology , Pregnancy , Prenatal Exposure Delayed Effects/microbiology
6.
Neuropharmacology ; 201: 108841, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34666076

ABSTRACT

A strong association between perinatal viral infections and neurodevelopmental disorders has been established. Both the direct contact of the virus with the developing brain and the strong maternal immune response originated by viral infections can impair proper neurodevelopment. Coronavirus disease 2019 (COVID-19), caused by the highly-infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently responsible for a large global outbreak and is a major public health issue. While initial studies focused on the viral impact on the respiratory system, increasing evidence suggest that SARS-CoV-2 infects other organs and tissues including the mature brain. While studies continue to determine the neuropathology associated to COVID-19, the consequences of SARS-CoV-2 infection to the developing brain remain largely unexplored. The present review discusses evidence suggesting that SARS-CoV-2 infection may have persistent effects on the course of pregnancy and on brain development. Studies have shown that several proinflammatory mediators which are increased in the SARS-CoV-2-associated cytokine storm, are also modified in other viral infections known to increase the risk of neurodevelopmental disorders. In this sense, further studies should assess the genuine effects of SARS-CoV-2 infection during pregnancy and delivery along with an extended follow-up of the offspring, including neurocognitive, neuroimaging, and electrophysiological examination. It also remains to be determined whether and by which mechanisms SARS-CoV-2 intrauterine and early life infection could lead to an increased risk of developing neuropsychiatric disorders, such as autism (ASD) and schizophrenia (SZ), in the offspring.


Subject(s)
Autism Spectrum Disorder/epidemiology , COVID-19/epidemiology , Cytokine Release Syndrome/epidemiology , Neurodevelopmental Disorders/epidemiology , Pregnancy Complications, Infectious/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Schizophrenia/epidemiology , Autism Spectrum Disorder/immunology , Brain/embryology , Brain/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Female , Humans , Infectious Disease Transmission, Vertical , Neurodevelopmental Disorders/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/immunology , Risk Factors , SARS-CoV-2 , Schizophrenia/immunology
7.
Nat Rev Neurosci ; 22(11): 657-673, 2021 11.
Article in English | MEDLINE | ID: mdl-34545240

ABSTRACT

Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder/physiopathology , Central Nervous System/physiology , Immunity, Cellular/physiology , Neuronal Plasticity/physiology , Schizophrenia/physiopathology , Age Factors , Animals , Autism Spectrum Disorder/immunology , Central Nervous System/cytology , Humans , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/physiopathology , Schizophrenia/immunology
8.
Nat Rev Neurol ; 17(9): 564-579, 2021 09.
Article in English | MEDLINE | ID: mdl-34341569

ABSTRACT

Maternal health during pregnancy plays a major role in shaping health and disease risks in the offspring. The maternal immune activation hypothesis proposes that inflammatory perturbations in utero can affect fetal neurodevelopment, and evidence from human epidemiological studies supports an association between maternal inflammation during pregnancy and offspring neurodevelopmental disorders (NDDs). Diverse maternal inflammatory factors, including obesity, asthma, autoimmune disease, infection and psychosocial stress, are associated with an increased risk of NDDs in the offspring. In addition to inflammation, epigenetic factors are increasingly recognized to operate at the gene-environment interface during NDD pathogenesis. For example, integrated brain transcriptome and epigenetic analyses of individuals with NDDs demonstrate convergent dysregulated immune pathways. In this Review, we focus on the emerging human evidence for an association between maternal immune activation and childhood NDDs, including autism spectrum disorder, attention-deficit/hyperactivity disorder and Tourette syndrome. We refer to established pathophysiological concepts in animal models, including immune signalling across the placenta, epigenetic 'priming' of offspring microglia and postnatal immune-brain crosstalk. The increasing incidence of NDDs has created an urgent need to mitigate the risk and severity of these conditions through both preventive strategies in pregnancy and novel postnatal therapies targeting disease mechanisms.


Subject(s)
Gene-Environment Interaction , Neurodevelopmental Disorders/immunology , Neuroimmunomodulation/immunology , Neuroinflammatory Diseases/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Female , Humans , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Neuroinflammatory Diseases/epidemiology , Neuroinflammatory Diseases/genetics , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/genetics
9.
Int J Neuropsychopharmacol ; 24(9): 734-748, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34165516

ABSTRACT

BACKGROUND: Minocycline (MIN) is a tetracycline with antioxidant, anti-inflammatory, and neuroprotective properties. Given the likely involvement of inflammation and oxidative stress (IOS) in schizophrenia, MIN has been proposed as a potential adjuvant treatment in this pathology. We tested an early therapeutic window, during adolescence, as prevention of the schizophrenia-related deficits in the maternal immune stimulation (MIS) animal model. METHODS: On gestational day 15, Poly I:C or vehicle was injected in pregnant Wistar rats. A total 93 male offspring received MIN (30 mg/kg) or saline from postnatal day (PND) 35-49. At PND70, rats were submitted to the prepulse inhibition test. FDG-PET and T2-weighted MRI brain studies were performed at adulthood. IOS markers were evaluated in frozen brain tissue. RESULTS: MIN treatment did not prevent prepulse inhibition test behavioral deficits in MIS offspring. However, MIN prevented morphometric abnormalities in the third ventricle but not in the hippocampus. Additionally, MIN reduced brain metabolism in cerebellum and increased it in nucleus accumbens. Finally, MIN reduced the expression of iNOS (prefrontal cortex, caudate-putamen) and increased the levels of KEAP1 (prefrontal cortex), HO1 and NQO1 (amygdala, hippocampus), and HO1 (caudate-putamen). CONCLUSIONS: MIN treatment during adolescence partially counteracts volumetric abnormalities and IOS deficits in the MIS model, likely via iNOS and Nrf2-ARE pathways, also increasing the expression of cytoprotective enzymes. However, MIN treatment during this peripubertal stage does not prevent sensorimotor gating deficits. Therefore, even though it does not prevent all the MIS-derived abnormalities evaluated, our results suggest the potential utility of early treatment with MIN in other schizophrenia domains.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Brain Diseases, Metabolic/drug therapy , Minocycline/pharmacology , Nervous System Malformations/pathology , Neurodevelopmental Disorders/drug therapy , Oxidative Stress/drug effects , Prenatal Exposure Delayed Effects/drug therapy , Prepulse Inhibition/drug effects , Schizophrenia/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Behavior, Animal/drug effects , Brain Diseases, Metabolic/etiology , Disease Models, Animal , Female , Magnetic Resonance Imaging , Male , Minocycline/administration & dosage , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/etiology , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/immunology , Positron-Emission Tomography , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/immunology , Rats , Rats, Wistar , Schizophrenia/chemically induced , Schizophrenia/immunology
10.
Mod Trends Psychiatry ; 32: 40-57, 2021.
Article in English | MEDLINE | ID: mdl-34032644

ABSTRACT

The dynamic population of microbes that reside in the gastrointestinal tract plays a pivotal role in orchestrating several aspects of host physiology and health, including but not limited to nutrient extraction and metabolism, as well as the regulation of intestinal epithelial barrier integrity. Gut microbes interact with the host in a bi-directional manner as the microbiota can support the development and education of the innate and adaptive immune systems, thereby conferring protection against pathogens and harmful stimuli while training the host to maintain a homeostatic tolerance towards commensal symbiotics. Recent advances in the field have highlighted the importance of the host-microbiota relationship in neurodevelopment and behaviour, with relevant implications for the onset and progression of brain disorders of inflammatory origin. Microbial modulation of brain function is achieved throughout complex neuro-immune-endocrine pathways of the microbiome-gut-brain axis. Changes in the composition of the gut microbiota or perturbation in microbial-derived metabolites and neuroactive compounds are sensed by the afferent branches of the sympathetic and vagal innervation and transmitted to the central nervous system, which in turn produces behavioural responses. Here, we focus on how the crosstalk between the gut microbiota and the immune system modulates the development and function of the peripheral and central nervous systems. Specific attention is afforded to the involvement of host-microbe neuroimmune interactions in the pathogenesis of neuro-psychiatric and neuroinflammatory disorders such as autism spectrum disorders, anxiety, and depression, as well as Parkinson's and Alzheimer's diseases.


Subject(s)
Brain , Gastrointestinal Microbiome/immunology , Host Microbial Interactions/immunology , Nervous System Physiological Phenomena/immunology , Brain/immunology , Brain/microbiology , Humans , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/psychology , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/psychology , Neuroimmunomodulation
12.
Neuroimmunomodulation ; 28(1): 22-28, 2021.
Article in English | MEDLINE | ID: mdl-33530091

ABSTRACT

COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) betacoronavirus, affects children in a different way than it does in adults, with milder symptoms. However, several cases of neurological symptoms with neuroinflammatory syndromes, such as the multisystem inflammatory syndrome (MIS-C), following mild cases, have been reported. As with other viral infections, such as rubella, influenza, and cytomegalovirus, SARS-CoV-2 induces a surge of proinflammatory cytokines that affect microglial function, which can be harmful to brain development. Along with the viral induction of neuroinflammation, other noninfectious conditions may interact to produce additional inflammation, such as the nutritional imbalance of fatty acids and polyunsaturated fatty acids and alcohol consumption during pregnancy. Additionally, transient thyrotoxicosis induced by SARS-CoV-2 with secondary autoimmune hypothyroidism has been reported, which could go undetected during pregnancy. Together, those factors may pose additional risk factors for SARS-CoV-2 infection impacting mechanisms of neural development such as synaptic pruning and neural circuitry formation. The present review discusses those conditions in the perspective of the understanding of risk factors that should be considered and the possible emergence of neurodevelopmental disorders in COVID-19-infected children.


Subject(s)
Brain/growth & development , COVID-19/immunology , Inflammation/immunology , Microglia/immunology , Neurodevelopmental Disorders/immunology , Brain/immunology , Brain/physiopathology , COVID-19/physiopathology , Diet , Dietary Fats, Unsaturated , Fatty Acids, Unsaturated , Fetal Alcohol Spectrum Disorders/immunology , Fetal Alcohol Spectrum Disorders/physiopathology , Humans , Inflammation/physiopathology , Neurodevelopmental Disorders/physiopathology , Neuronal Plasticity , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Systemic Inflammatory Response Syndrome
13.
Nat Rev Immunol ; 21(7): 454-468, 2021 07.
Article in English | MEDLINE | ID: mdl-33479477

ABSTRACT

The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells - microglia - have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.


Subject(s)
Brain/growth & development , Brain/immunology , Immunity, Innate , Neurodevelopmental Disorders/immunology , Animals , Autistic Disorder/etiology , Autistic Disorder/immunology , Brain/abnormalities , Cytokines/immunology , Female , Humans , Inflammasomes/immunology , Maternal-Fetal Exchange/immunology , Microglia/immunology , Models, Immunological , Models, Neurological , Neurodevelopmental Disorders/etiology , Neuroimmunomodulation , Phagocytosis/immunology , Pregnancy , Signal Transduction/immunology , Toll-Like Receptors/immunology
14.
Encephale ; 47(2): 151-156, 2021 Apr.
Article in French | MEDLINE | ID: mdl-32928535

ABSTRACT

OBJECTIVE: The SARS-CoV-2 (or COVID-19) pandemic has been propagating since December 2019, inducing a drastic increase in the prevalence of anxious and depressive disorders in the general population. Psychological trauma can partly explain these disorders. However, since psychiatric disorders also have an immuno-inflammatory component, the direct effects of the virus on the host's immune system, with a marked inflammatory response, but also the secondary inflammation to these psychosocial stressors, may cause the apparition or the worsening of psychiatric disorders. We describe here the probable immunopsychiatric consequences of the SARS-CoV-2 pandemic, to delineate possible screening actions and care that could be planned. METHOD: Data from previous pandemics, and existing data on the psychopathological consequences of the SARS-CoV-2 pandemic, allowed us to review the possible immunopsychiatric consequences of the SARS-CoV-2 pandemic, on the gestational environment, with the risk of consecutive neurodevelopmental disorders for the fetus on one hand, on the children and adults directly infected being at increased risks of psychiatric disorders on the other hand. RESULTS: As in previous pandemics, the activation of the immune system due to psychological stress and/or to infection during pregnancy, might lead to an increased risk of neurodevelopmental disorders for the fetus (schizophrenia and autism spectrum disorders). Furthermore, in individuals exposed to psychological trauma and/or infected by the virus, the risk of psychiatric disorders, especially mood disorders, is probably increased. CONCLUSION: In this context, preventive measures and specialized care are necessary. Thus, it is important to propose a close follow-up to the individuals who have been infected by the virus, in order to set up the earliest care possible. Likewise, in pregnant women, screening of mood disorders during the pregnancy or the postpartum period must be facilitated. The follow-up of the babies born during the pandemic must be strengthened to screen and care for possible neurodevelopmental disorders.


Subject(s)
COVID-19/immunology , Neurodevelopmental Disorders/immunology , Prenatal Exposure Delayed Effects , Anxiety Disorders/diagnosis , Anxiety Disorders/immunology , Anxiety Disorders/prevention & control , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/immunology , Autism Spectrum Disorder/prevention & control , COVID-19/complications , COVID-19/diagnosis , Depressive Disorder/diagnosis , Depressive Disorder/immunology , Depressive Disorder/prevention & control , Female , Humans , Infant, Newborn , Mass Screening , Mood Disorders/immunology , Mood Disorders/prevention & control , Mood Disorders/psychology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/prevention & control , Pregnancy , Prenatal Care , Risk Factors , Schizophrenia/diagnosis , Schizophrenia/immunology , Schizophrenia/prevention & control , Stress, Psychological/complications
15.
Psychiatr Hung ; 35(4): 529-539, 2020.
Article in Hungarian | MEDLINE | ID: mdl-33263302

ABSTRACT

No abstract avalilable.


Subject(s)
Neurodevelopmental Disorders/immunology , Humans
16.
Nat Commun ; 11(1): 5236, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067431

ABSTRACT

The etiology of major neurodevelopmental disorders such as schizophrenia and autism is unclear, with evidence supporting a combination of genetic factors and environmental insults, including viral infection during pregnancy. Here we utilized a mouse model of maternal immune activation (MIA) with the viral mimic PolyI:C infection during early gestation. We investigated the transcriptional changes in the brains of mouse fetuses following MIA during the prenatal period, and evaluated the behavioral and biochemical changes in the adult brain. The results reveal an increase in RNA editing levels and dysregulation in brain development-related gene pathways in the fetal brains of MIA mice. These MIA-induced brain editing changes are not observed in adulthood, although MIA-induced behavioral deficits are observed. Taken together, our findings suggest that MIA induces transient dysregulation of RNA editing at a critical time in brain development.


Subject(s)
Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Pregnancy Complications/immunology , Pregnancy/immunology , Prenatal Exposure Delayed Effects/genetics , RNA Editing , Animals , Behavior, Animal , Brain/growth & development , Brain/immunology , Brain/metabolism , Disease Models, Animal , Female , Immunity, Maternally-Acquired , Mice , Mice, Inbred C57BL , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/psychology , Poly I-C/adverse effects , Poly I-C/immunology , Pregnancy Complications/etiology , Pregnancy Complications/genetics , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/psychology
17.
J Reprod Immunol ; 142: 103185, 2020 11.
Article in English | MEDLINE | ID: mdl-32853845

ABSTRACT

Preeclampsia (PE) and human immunodeficiency virus (HIV) have been linked with marked increases in maternal stress, resulting in a significant change in placental function ranging from alterations in placental structure to the precise and delicate transformations in placental gene expression. Such changes may lead to altered transport of essential signals to the fetus, which can have long-term impacts on offspring health and consequently affect fetal neurodevelopment. Therefore, this work investigated the role of placental 11ß-hydroxysteroid dehydrogenase types 2 (11ß-HSD2) in HIV associated preeclampsia. The placenta were obtained from 76 pregnant women, which were stratified based on pregnancy type and HIV status into; Normotensive HIV negative, normotensive HIV positive, PE HIV negative and PE HIV positive. The placental tissue was processed for immunocytochemistry and stained with rabbit polyclonal to 11ß-HSD2 Our results showed significant downregulation in the placental expression of 11ß-HSD2 in both the conducting and exchange villi of PE and HIV-positive patients when compared with Normotensive and HIV-negative individuals, respectively. Our results provide inferential evidence for comorbidity of PE and HIV in the downregulation of placental 11ß-HSD2 enzyme function, which mediates the programmed outcomes of an adverse maternal environment during pregnancy and long-term impacts on offspring health and consequently affects fetal neurodevelopment.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Fetal Development/immunology , HIV Infections/complications , Neurodevelopmental Disorders/immunology , Pre-Eclampsia/immunology , 11-beta-Hydroxysteroid Dehydrogenase Type 2/analysis , Adolescent , Adult , Brain/embryology , Case-Control Studies , Down-Regulation , Female , Glucocorticoids/immunology , Glucocorticoids/metabolism , HIV Infections/diagnosis , HIV Infections/immunology , HIV Infections/virology , HIV-1/isolation & purification , Humans , Maternal Age , Neurodevelopmental Disorders/pathology , Placenta/enzymology , Placenta/immunology , Placenta/pathology , Pre-Eclampsia/pathology , Pre-Eclampsia/virology , Pregnancy , Retrospective Studies , South Africa , Young Adult
18.
Neuropsychopharmacol Rep ; 40(3): 268-274, 2020 09.
Article in English | MEDLINE | ID: mdl-32463181

ABSTRACT

AIM: Epidemiological data suggest that maternal immune activation (MIA) plays a role in the etiology of neuropsychiatric disorders including autism spectrum disorder (ASD) and schizophrenia. However, there is no prophylactic nutrition that can prevent the onset of neurodevelopmental disorders in offspring after MIA. The aim of this study was undertaken to examine whether dietary intake of glucoraphanin (GF: the precursor of a natural anti-inflammatory compound sulforaphane) can prevent the onset of behavioral abnormalities in offspring after MIA. METHODS: One percent of GF food pellet or normal food pellet was given into female mice during pregnancy and lactation (from E5 to P21). Saline (5 mL/kg/d) or poly(I:C) (5 mg/kg/d) was injected into pregnant mice from E12 to E17. Behavioral tests and immunohistochemistry of parvalbumin (PV) were performed in male offspring. RESULTS: Dietary intake of GF during pregnancy and lactation prevented cognitive deficits and social interaction deficits in the juvenile offspring after MIA. Furthermore, dietary intake of GF during pregnancy and lactation prevented cognitive deficits in the adult offspring after MIA. Moreover, dietary intake of GF prevented the reduction of PV immunoreactivity in the medial prefrontal cortex of adult offspring after MIA. CONCLUSION: These data suggest that dietary intake of GF during pregnancy and lactation could prevent behavioral abnormalities in offspring after MIA.


Subject(s)
Glucosinolates/administration & dosage , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/prevention & control , Oximes/administration & dosage , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/prevention & control , Sulfoxides/administration & dosage , Animals , Cognition/drug effects , Cognition/physiology , Female , Lactation/drug effects , Lactation/immunology , Male , Mice , Neurodevelopmental Disorders/psychology , Pregnancy , Prenatal Exposure Delayed Effects/psychology
19.
Neurobiol Dis ; 141: 104864, 2020 07.
Article in English | MEDLINE | ID: mdl-32278881

ABSTRACT

The prenatal environment, and in particular, the maternal-fetal immune environment, has emerged as a targeted area of research for central nervous system (CNS) diseases with neurodevelopmental origins. Converging evidence from both clinical and preclinical research indicates that changes in the maternal gestational immune environment can alter fetal brain development and increase the risk for certain neurodevelopmental disorders. Here we focus on the translational potential of one prenatal animal model - the maternal immune activation (MIA) model. This model stems from the observation that a subset of pregnant women who are exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder, such as autism spectrum disorder (ASD) or schizophrenia (SZ). The preclinical MIA model provides a system in which to explore causal relationships, identify underlying neurobiological mechanisms, and, ultimately, develop novel therapeutic interventions and preventative strategies. In this review, we will highlight converging evidence from clinical and preclinical research that links changes in the maternal-fetal immune environment with lasting changes in offspring brain and behavioral development. We will then explore the promises and limitations of the MIA model as a translational tool to develop novel therapeutic interventions. As the translational potential of the MIA model has been the focus of several excellent review articles, here we will focus on what is perhaps the least well developed area of MIA model research - novel preventative strategies and therapeutic interventions.


Subject(s)
Brain/growth & development , Disease Models, Animal , Neurodevelopmental Disorders/immunology , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Brain/immunology , Female , Humans , Neurodevelopmental Disorders/etiology , Pregnancy , Translational Research, Biomedical
20.
BMC Neurol ; 20(1): 115, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228505

ABSTRACT

BACKGROUND: Cytokines are possible mediators of neuroinflammation and associated with adverse outcome in neonatal encephalopathy (NE). Our aim was to explore cytokine response in children with Neonatal Encephalopathy (NE) at school age compared to age-matched controls. METHOD: Follow up at school age, children who had NE and age-matched controls were assessed for their cytokine responses and neurodevelopment outcome. Pro- and anti-inflammatory cytokines in the serum, [Interleukin (IL)-1α, IL-1ß, IL-2, IL-6, IL-8, IL-18, Tumor necrosis factor (TNF)-α, TNF ß, Interferon (IFN)-γ, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), erythropoietin (EPO), IL-10 & IL-1RA] were measured at baseline and in response to in vitro stimulation with lipopolysaccharide (LPS: endotoxin). RESULTS: GM-CSF, TNF-ß, IL-2 IL-6 and IL-8 were significantly elevated at school age following NE (n = 40) compared to controls (n = 37). A rise in GM-CSF, IL-8, TNF-α, IL-1ß, & IL-6 were seen in NE group following LPS stimulation. Relative LPS hypo-responsiveness was also noted in children with severe NE with IL-10, VEGF, EPO and TNF-ß. Elevated TNF-ß was associated with low gross motor scores on assessment at school age. CONCLUSION: School-age children post-NE had significantly altered cytokine responses to endotoxin compared to controls. TNF-ß was associated with adverse developmental outcomes. This suggests the inflammatory process may persist into childhood and a longer therapeutic window may be available for neuroprotection therapies.


Subject(s)
Asphyxia Neonatorum/complications , Asphyxia Neonatorum/immunology , Cytokines/blood , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/immunology , Brain Diseases/etiology , Brain Diseases/immunology , Child , Female , Humans , Infant, Newborn , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...